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ABSTRACT |3/ 24

An analysis was made of specular radiation exchange within a circular

E-1382

tube open at both ends and in vacuum. The tube 1s exposéd to thermel radiation
from an environment at each end and can have a uniform heat flux supplied

at its wall. The external surface of the tube wall i1s insulated, while the
internal surface is a gray, specular (mirrorlike) reflector for thermal
rgdiation. The integral equations governing the radiation exchange are
solved to determine the internal surface temperature and the amount of heat
transmitted through the tube from the environment at one end to the other.
Specular reflections were found to reduce the maximum surface temperature of
the heated wall as compared with diffuse reflections, and in some instances
the maximum temperature was below the value for a black surface. The

energy transmitted through the tube was larger for the specularly reflecting
wall than for diffuse reflections. ' It was also shown that the energy

transmitted for a diffusely reflecting gray wall is the same as for a black

-

wall.
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NOMENCLATURE

area on inside surface of tube wall

tube diameter

error correction for separable kernel solution

configuration factor for direct radiation between a ring element on the
tube wall and a circular area at end of tube

exchange factor for specular radiation between two ring elements on
inslde of tube

configuration factor for direct radiation between two ring elements on
inside of tube

length of tube

dimensionless length, L/D

exchange factor for specular radiation between a ring element on the
tube wall and & circular area at end of tube

see Eq. (12)

heat transmi£ted through length of tube

heat added per unit area at tube wall

absolute temperature

axial length coordinste measured from left end of tube

dimensionless coordinate, X/D

defined as x/(n+l)

coordinate equal to 1-x; ¥ = y/(n+l)
emissivity of surface

dimensionless temperatiure, cTﬁ/q



4
6 dimensionless temperature, TW/T§

@)

solution for 6 wusing separable kernel (see Egq. (18))

1l

location of ring element radiating to element at X
3 dimensionless variable, /D

o Stefan~Boltzmann constant

o) see Eq. (12)

¥ integral defined in Eq. (21)

Subscripts
1 environment at left end of tube
r enviromment at right end of tube

' tube wall
INTRODUCTION

When the exchange of thermal radiation between surfaces is being determined,
it is often assumed that the surfaces are diffuse reflectors. However, as
discussed in [1], many materials reflect at least partially in a specular
manner. This is especially true for surfaces with a mirrorlike finish where

refleckions
the redietion—exehense will be almost entirely specular. The purpose of
this paper is to investigate the limiting case of puredry—sPeewdar radiation

with purely specular reflekions the for completety diffuse reflection

exchange in an enclosure/and compare it with d—:i.—f—ﬁ&se/behavior Fre—ecomr- '
Tn both Cases ik is a reasonable assumption to have the emission Frome the surfuce diffuse. The con-
figuration which was studied is a heated cylindrical tube open at both ends.
This is of interest because there is a possibility that, for a specified wall
heat flux, specularly reflecting walls may diminish the wall temperature in
some regions of the tube. Also with a curved polished tube it may be possible

to channel heat from a source to another location not in direct view of the

source. In this case, if the emissivity of the surface is low, the energy



radiated into one end of the tube will be reflected down the length of the
enclosure and will emerge from the other end with only slightly diminished
intensity. The transmittance through a straight tube will be one of the
results of the analysis.

There are a few references which are pertinent to the present study.
For diffusely reflecting gray walls, temperature distributions were found for
short uniformly heated tubes in [2], and the results are extended here to
larger length-diameter ratios. The diffuse solutions are needed for comparison
with the specular results. For a specular reflecting gray surface this
configuration has been treated in (3] by an approximate method for very long
tubes, but a complete solution was not obtained. TFor a cylindrical hole
closed at one end and at constant wall temperature, the heat flux issuing
from the open end for specular reflecting gray surfaces was considered in
[4]. There is an error in Eq. (7) of this reference which is corrected in
[5].

The cylindrical tube considered here is open to a different environment
temperature at each end. The tube is in a vacuum so that heat exchanges
occur only by thermal radiation. Axial heat conduction within the tube wall
is neglected. A specified uniform heat input is supplied at the tube wall,
and the outer surface of the tube is assumed perfectly insulated so that all
of the energy received by the wall must be transferred out through the ends
of the enclosure. The inside surface of the wall is assumed to be gray and to
reflect specularly.

The energy equation governing the radiation exchange is a linear Fredholm

integral equation. Because of the linearity, it is convenient to break the



general problem into two parts, (1) uniform heating applied at the tube wall
with the external enviromment at both ends of the tube at zero temperature,
and (2) the wall unheated with the environment temperature equal to zero at
one end and having a specified value at the other end. These can be combined
to give the general case as shown in [2]. The integral equation is solved
by two separate methods. In one the integrals are approximated in finite
difference form by using Simpson's rule. This ylelds a set of linear
algebraic equations which are solved simultaneously for the wall temperature
at incremental lengths along the wall. In the second method the wall
temperature inside the integral sign is expanded in a Taylor series as
suggested in [3]. This transforms the integral equation into an ordinary
differential equation which is solved numerically on a digital computer.
These methods were applied to both the specular and diffuse cases for a range
of L/D and €.
ENERGY BATANCE

The energy equation for the surface temperature of the tube is found
by forming a heat balance on a cylindrical element of differential area
dAX located at X on the inside surface of the tube (Fig. 1). The energy

leaving the element by radiation is
€ oT(X)dA (1)
W X
The energy supplied to the element is composed of three terms. The first

is the specified uniform heat flux supplied to the tube

qd-AY ' (2)



The second includes the contributions from the enviromments at the left

and right ends of the tube. It is assumed that the environments can.be

Thus the radibion en’eerim, Ahneugh khe ends 15 bekh ditfurely and vaifurmly distributed over the end
represented by black planes at the ends of the tubef‘ The exchange factor  °Fe"")S:
for specular radiation exchange from an element at X +to the circular

opening at the left end is called M(X), and it is derived later. The

factor M(X) has been based on an element of tube wall area. The

absorptivity of the surface 1s assumed constant and equal to its emissivity

using the usual gray wall assumption. The radiation entering the left

end is OT% rer unit area. The portion of this that arrives at X and

is absorbed is

4 eM(X)aa

OTZ X

(3a)

In a similar fashion the radiation supplied by the environment at the right
end is

GTﬁ eM(L-X)dAy (3b)
The third energy input to the element is that supplied from the other
elements of the tube wall. The exchange factor for specular radiation
between two ring elements a distance Z apart is defined as G(Z) and is
that

derived later. Then the energy radiated from one element at = addeh

reaches and is absorbed by another at X 1is
= ==X =
ezdr;i’(-5> G| D ldAXdD (4)

The contribution from the entire wall is found by integrating Bq. (4) over

the length of the tube:
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The heat balance can now be formed by equating Eq. (1) to the sum of (2),

(3), and (5):

eoTé(%) = q + eoT% 1"(%) + eo‘l‘i“ M(%ﬁ)
~X/D L/D

D2 ENEENE L [ <2 .acég
+ L€ oTé(D)G( D >95~+ : € oTé(D)G 5

0 X/D

el

(8)

The expressions for M and G will now be derived.

Exchange factor between ring element and end of tube. - For specular

radiation the exchange factor M is composed of the sum of exchanges due to
direct radiation, one reflection, two reflections, and so forth.. The factor
for direct exchange between a ring element at X and a circular opening at

the left end of the tube has been given in [6] or [2] by
X\’ , L
D 2
2 2
o 7
D

The energy exchanged by one reflection can be computed as shown in Fig. 2.

F(X) =

- X
D

The radiant energy from the element at X that passes directly through the
plane at X/2 will either leave the tube opening directl&, or the part that
is reflected will leave the opening after one reflection. The radiant energy
from the element at X +that strikes the wall before passing through the

plane at X/2 will require two or more reflections before leaving the tube.



As a result, the exchange between the ring element and the end of the tube

for one reflection equals the reflectivity of the wall multiplied by the
difference between the energy radiated through the plane at X/Z and the energy
radiated directly out of the tube. The configuration factor for the energy
that is radiated through X/2 is given by F(X/Z), and. the factor for

the energy leaving directly is given by F(X). Consequently the exchange
factor for one reflection is equal to (1l-€) [F(X/2) - F(X)].

In a similar fashion if there are two reflections the factor is found
as follows. The radiant energy from the element at X +that strikes the
wall before passing through a plane located a .distance X/3 from X will
require three or more reflections for any part of it to leave the tube,
while the energy that passes directly through a plane at X/2 will require
one or no reflections before any part of it leaves. For two reflections
the exchange factor is then the reflectivity squared times the.difference
between the configuration factor for the energy passing through a cross
section at a distance X/3 from X and the configuration factor for the

energy passing through the cross section at X/2:

(1)° E (}-SS) -.:1-"(22(.]

In a similar fashion for n reflections

(1)" E(E{%I); F(%—ﬂ |

The exchange factor between a ring and the left end of the tube is found

by summing , the contributions from all the reflections:




The factor from a ring to the right end of the tube follows in an identical

fashion:
M(L-X) = F(L-X) + i (1-e)" E(%%) - F <£;2‘.>] (7b)
n=1 .

Exchange factor between two ring elements. - Here again the total

exchange is computed by summing the direct exchange, exchange by one reflection,
exchange by two reflections, and so forth. The direct exchange is obtained
from the configuration factor between two ring elements separated by a

distance Z (see [6] or [2])

(2) +2
K(Z) = 1 -2 22 %?zo

R

The energy arriving after one reflection at an element located 2
distance away from the emitting element is obtained as follows (see Fig. 3).

The only energy from dJdA- that can reach dAX after one reflection

must be reflected from an element dAZ/2 halfway between dA. and dAX.

The exchange factor for energy leaving dA. which arrives directly at

the element dAZ/Z is K(%). An smount (1-€) of this is specularly

reflected to dAy. However, as shown in Fig. 3, only half of

the reflected radiation is intercepted by the element dAy,
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since the radiation from any point on dAz that is reflected at z/2
will irradiate a region twice as large as dAy when it reaches the X

location. To account for this, s factor of 1/2 has to be introduced, and

the exchange factor for one reflection becomes

N

In a similar fashion for n reflections the result is

(i;;:_)n K (n%—l)

The total exchange is found by summing the results for all reflections to

give

2]

<) _/z
¢(2) = K(2) +Z (L) x5 ) (8)

n=1

The exchange factors given by Egs. (7) and (8) can now be substituted
into the energy equation (6), which is to be solved for the unknown wall
temperature.

SUPERPOSITION OF SOLUTIONS

The energy Eq. (6) is linear in the variable Té and as a conseguence
the general solution can be simplified by considering two more elementary
solutions which can be combined to yield results for any combination of
imposed wall heat flux q, left enviromment temperature Tz, and right
enviromment temperature Tr' One of the basic solutions is where the wall
i; heﬁted but the environments are maintained at zero temperature. In this

h ]

case Eq. (6) reduces to J
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X 3 |
€0(x) =1+ &2 6(£)G(x-t)aE + €2 6(£)G(e-xPat (9)
0 )%
4 -
where 6 = ——T'-"-, X = %, and § =%‘.

The second basic solution is where no heat is supplied at the channel
walls and the right enviromment T, is maintained at zero temperature
while the left environment TZ has a specified value. ZEquation (6) then

reduces to

X 1
Be(x) = M(x) + € B (8)G(x-E)at + € fe(t)G(E-x)at (10)
0 X
where

T4

eez—y-

T4

1

When 6 and 6, are known, the general solution for any gq, Ty
and Ty is found from
4 ' 4 . 4 .
0Ty (x) = q8(x) + 0T76,(x) + oTp8(1~x) (11)
The quantities 6,(x) and 6,(1-x) can be related by noting that, for

4 4 Q"Xv

. *
% =T, Tj must equal T,, and Eq. (11) gives eé(nq&) = 1-eeOX).

q=0 and TZ r

As a result Eq. (11) can be written in the alternate form
oTH(x) = q8(x) + o(T3-T=)0e + oTs (11a)

We now ‘proceed to obtain solutions for 6 and 6, from Egs. (9) and (10).
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NUMERICAL SOLUTION OF INTEGRAI EQUATION
It is convenient to write Egs. (9) and (10) in the same form. This

is given as

.4
o(x) = P(x) +e [ 0()e(x-t)at + e | o(R)e(e-x)at  (12)
A ]
where when
P(x) =1 P(x) = M(x)
o(x) = e6(x) (x) = 6o(x)

The numerical solution of Eq. (12) was found by dividing the tube into
increments by selecting N + 1 points along its length, where N is an
even number. The incremental length between points is then A = Z/N.
Equation (12) is applied at each point, and the integrals are approximated
by using Simpson‘'s rule. This gives a set of N + 1 linear algebraic
equations which can be solved simultaneously for the unknown temperatures
along the tube. ”There is a speciél approximation that must be made because
the integrand Q(;)Glx-gl has a discontinuity in derivative at & = x.
Simpson's rule is based on fitting a parabola between three points, and
if the discontinuity is anywhere between the end points, the approximation
to the curve may be poor. In these cases, singe the function ¢ does not

have a discontinuity, an intermediate value of @ . is interpolated at

e
1l

:ofg halfway between the discontinuity €& = x and the previous point

uvr
[

x-A. Then Simpson's rule is applied for the three points x-A,

X = %, and x. The value of & at x =~ % must be found in terms of &

at the surrounding points so as not to introduce any new unknowns. This
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was done by using the interpolation formula
&Y. 3. 3 La
0 (x'- 5).,_,18 @ (x-8) +20.(x) - g0 (xa)

The same procedure was used to approximate the integral in the interval
between € = X and X + A. PFurther details on this procedure are given
in [7]. When solving the set of simultaneous equations the computations
are considerably shortened by noting as discussed in [2] for the diffuse
case that 6 is symmetric and Ge is skew symmetric about 1/2.
TAYLOR SERIES SOLUTION

A shortcoming of the numerical method described in the preceding
section is that, when the tube is long, large numbers of increments are
required, and it becomes difficult to obtain an accurate solution to a
large set of simultaneous equations. Hence an alternate procedure was

investigated which has been suggested in [3]. In this method a Taylor

series approximation was made for the temperature function QQﬂin Eq. (12):

2 [32
o(8) = o(x) + (£~x) [%Xﬂ R E{—‘g\ e (13)
. X X

In the present study the series expansion was not carried beyond the second

derivative term.

Substituting Eq. (13) for ®(t) in the integrals in Eq. (12) gives

o(x) = P(x) + ¢ f {Q(x) + (& -x) E&@] + (g_}g)z Eﬂ G |g-x]| at
X ax_ i

(14)

g
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The integration can now be carried out because it is with respect to &,
while & and its derivatives are functions of x and hence can be
taken out of the integral. This gives the following second-order

differential equation:

1 1
e 3% a®
%E- (-x)? Gle—x| ag| + e == (e-x) G|e-x| as
0] 0]
1
+ 9 e Gle-x| d& - 1| = - P(x) (15)
0

where the terms in the brackets are given by

z - x4 + .x_rzl. + 1
1 2 3 n- 2
(6-x)2 Gle-x| & = 3 > (1-e)® (n+1)% |x3 +y3 + 2 - —t
n=0 (Xn + .1.)
0
2
y
yf{ + —ér-l- + 1
- 1/2
2
(v, + 1)
A
o s .
(& -x) Glg—x' at =1 2 (1-¢)® (n+1) Y?l _ XE’[ + Xn _ Yn
©z /2 . 1/2
n=0 (X—2+l) (y2+l)
0 n n
1 w
| 1 xg + % v * %
A1 — .. _
G|e-x| ag = .(1-69 1+ =7 7z ) 7z
o = (x2+1) (y5+1)

For the Taylor series approximation to yield accurate solutions, one of two

conditions must be fulfilled: (l),?he kernel G]g-x! decreases sufficiently
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fast as |§-x| increases from zero that over the interval where the Taylor
series approximation for ¢ is no longer accurate very little is contributed
to the integrals, or (2) The solution &(x) is such a simple curve that it
can be represented with good accuracy over its‘entire length by a Taylor
series of three terms expanded about any point. The differential equation (15)
was solved by forward integration using the Runge-Kutta method on a digital
computer. The boundary conditions are different for the 6 and 6, functions,
and will be discussed one at a time.

The 6 function is symmetric about the center of the tube (x = 1/2)
and hence the integration can be started there with the boundary condition

cd_i‘_z__ = O,/&,‘t X =;»5],ﬁ2

-The integration is carried forward to x = 1. To start the integration a
value of 6(1/2) has to be guessed, and for each value that is chosen a
different temperature distribution will be obtained. To determine which
solution is correct the distributions are each teéted in an overall heat
balance which will be satisfied when the correct 6(1/2) is used. The
heat balance is derived as follows. The héat added at the tube wall is

g@nDL. The hesat radiated out of the left end of the tube is

L 4
ﬂD\jé‘ 0T, (X)M(X)ax

Since by symmetry the heat leaving the right side of the tube is equal to

that leaving the left side, the heat balance can be written as

. NL
9%?—-= nDL/L eoTé(X)M(X)dX (16)
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This can be placed in the dimensionless form

1
e6(x)M(x)dx (16a)

D] e
i

The correct Taylor series solution for 6 will satisfy this relation
The function 6 1is skew symmetric about 1/2 and in this case the
integration is started from the boundary condition
b= 1/2 at x =1/R
The first derivative d6./dx at 1/2 is, guessed, and the differential equation
is integrated to x = 1. The solution is then tested in the boundary
condition obtained by evaluating the original integral equation (10) at

x=1

1
0,(1) =M(2) + ¢ | 9o(8) G(1-E) at

If this is not satisfied a new derivative at 1/2 ié tried and the solution
repeated. Since the differential equations for 6 and 6, are linear,
only two trial solutions are needed to interpolate the correct solution.
ERROR CORRECTION SOLUTION

For comparison with the resulté for specular reflections it is necessary
to have solutions for the case whefé the surface is diffuse. As shown in [2]
these can be found when the resulﬁ for a black tube is known. For a black
wall, solutions can be found numerically or with the Taylor series method by
letfing € = 1 in the previous formulations. Results for short tubes are
also given in [2] where a variational method and a separsble kernel method

were employed. The'seperable kernel method begins to be in error for tubes
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with L/D > 5, and hence the analysis in [2] needs to be extended to apply for
longer tubes before it can be compared with the present results which extend
to L/D = 20. This can be done by finding an error correction for the
separable kernel solution by using a method outlined in [8]. This discussion
is limited to determining the solution for 6 with a black wall. For this

case the integral equation (9) reduces to
X i
o(x) =1+ 6(&)K(x-£)ae + 6(&)K(E-x)de (17)
0 b 4
An approximate solution © found in [2] by using the approximate separable
kernel is
6=1+1+2 (x1-x2) (18)
A corrected solution 6 is found by determining the error E(x) introduced
by using the spproximate kernel so that
6(x) = 6(x) + E(x) (19)

The error is found from the integral equation
1
E(x) = v(x) +'b/n K|x-£| E(§)dt (20)
v o

where

1
vix) = (KIX-él - e'z'x"g!) a(e)ag (21)

The quantity in parenthesis is the difference between the exact and approxi-
mate kernels.
Equation (20) is of the same type as the original Eq. (17) and can

be solved by using an approximate kernel to yield an approximate E(x).

<
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The error in E(x) will be a small second-order difference in the final
solution. Introducing the separable kernel into the integral involving
E(¢) in Eq. (20) gives

be 1
E(t)e”bag + 2% E(t)e 2t (22)
0 Ux

E(x) =¥(x) + ;EE

By differentiating twice and subtracting the original equation multiplied

by four, the integrals are elimingted to give

d°E _ a2y
=z 2y
. -

After integrating twice,the solution is

X NE:
E(x) =y (x) - 4f f ¥ (x)dxdx + C3x + Co (23)

where C; and Cp, are arbitrary constants which remain to be determined.
The function V(x) in Eq. (23) is found by carrying out the integration'in
Eq. (z%‘). It is substituted into Eq. (23) and integrated twice. The
constant Cq is evaluated by using the fact that E(x) 1is symmetric about
x = 1/2 so that dE/dx at 1/2 equals zero. The constant C, is found
by applying the boundary condition obtained by evaluéting Eq. (22) at

x = 0. These steps require considerable algebraic manipulation which it
was felt not worthwhile to include here. ‘Hence we go .directly to the -

final answer

E(x) = [1+2x(1-x)] (- 3+ 1+ 1% +1%/3) +8(x) +801-x) + Cp

(24)




- 19 -

where
8 (x) =(— - x> Eoge(x + x4 1)]
1/2 (4 1 1x . 8 12 1x3 3 21 1x5 26>
2 &L _-_X S 2 X X X X - X
+ (x541) (3+6 g TFEXTE T TSt TR I8
and

1
Cp = —2 {s( )48 (1=x) + |142x(1-x)
: (14e~2Y) . * * l: * ]

E— +1+12 +1 /]} ~2X gx - %

1
+§loge<l+ 7.+l) (l+1

1

3
3
)-1/2

(§+3 22, ab,me 22, )
The final corrected solution is obtained by adding E(x) to the approxi-
mate solution given in Eq. (18). Numerical results are given in the
next section.
RESULTS.FOR UNIFORMLY HEATED WALLS WITH ENVIRONMENT AT ZERO TEMPERATURE
In this section results are given for the case when the tube wall is
uniformly heated and the enviromment at each end of the tube is at gzero

temperature.

Diffuse surface. - For comparison with the results for a specular

surface the solutions for the diffuse case are needed. In [2] it was
shown that the diffuse gray solution can be obtained from the results for

a black wall by using the relation

oTs = q(%'. - 1) + (o*rfj)e_ (25)
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Since the black wall solution does not depend on whether the surface is spec-
ular or diffuse, it is obtained from the present specular analysis by letting

€ go to unity. For black tubes with lengths of 1 =25, 10, and 20, values

1/4
of TW(%> are tabulated in Table 1 for both the direct numerical computation

and the Taylor series method. Included for comparison are the solutions from
[2] obtained by using a variational procedure and an approximate separable
kernel. The latter method gives less accuracy as the length of the tube
increases, but after adding the error correction from the previous section
the results are very good. The present solutions all agree within a

fraction of 1 percent and were used along with Eq. (25) to determine the
diffuse curves in Fig. 4.

Specular surface. - For specular walls results were found for a few

diffefent emissivities by both the numerical and Taylor series methods. A
comparison of the results is given in Table 2 .for a few different lengtﬁs,
and the agreement is within 3 percent. Figure 4 compares the specular and
diffuse wall temperature distributions for 1 = 5, 10, and 20. In contrast
with the diffuse solutions the specular temperatures do not increase
monotonically as the emissivity is reduced but go through a minimum value
when the emissivity is in the range of 0.1 to 0.5. The presence of a
minimum can be interpreted physically:as follows. ©Since the outside

of the heated tube is assumed perfectly insulated all the heat supplied must
be dissipated through the open ends of the tube. The temperatures in the

central portion of the tube will be minimized when the optimum communication

is achieved between this part of the tube and the end openings. The mirrorlike




- 2] -

reflections of a specular surface are quite effective in transmitting energy
through the tube and can even be more effective than a black suffacé.
Figure 5 shows the wall temperature at the midpoint of the tube (X = L/z)
as a function of emissivity. As the tube length is increased, a smaller
emissivity is required to obtain the maximum reduction of midpoint
temperature, and the temperatures are substantially below the values for a
black surface.
RESULTS FOR UNHEATED WALL AND SPECIFIED ENVIRONMENT TEMPERATURES

In this section results are given for the case where no heat flux is
imposed at the tube wall and the right end .environment is at zero temperature
while the left end environmment is at a specified temperaturé.

Diffuse solution. - When there is no heat flux imposed at the tube

wall (q = O) the diffuse solution is found from Eq. (25) as
4 _ 4
o = (Tw)€=1 (26)

This showé that, for the unheated wall, (g = O), the emissivity of the

wall has no influence on the wall temperature distribution. This arises

from the fact that, for an externally insulated wall with zero heat conduction,
at steady state all absorbed energy must be reemitted from the same location
at which it was absorbed.. Both the reemitted and reflected energy are
diffuse, and as a result all of the heat incident upon an elemental area

will leave diffusely. Hence it will not make any difference to what extent
tﬁe energy leaving the surface is composed of energy that has.been directly
reflected or absorbed énd reradiated and is thus independent of the

emissivity.
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Specular surface. - The results for the specular surface were carried

out using both the numerical procedure and the Taylor series method out-
lined previously, and the two methods were in agreement within a few per-
cent. In Fig. 6 are shown the dimensionless wall temperature distributions
for different tube lengths. The curves are given for only the first half
of the tube, since the results for the remgining half can readily be
obtained from the skew symmetry of the solution

0o(x) =1 - 6,(1-x)

The curves show there is a decrease in the maximum wall temperature
for specular surfaces as € Dbecomes smaller. The specular distributions
are more uniform than the diffuse curves which remain thé same for all e.
In the limit as € - O +the specular temperature distribution can be

and(Ja)
obtained from Egs (lO)/és

(ee<x))€=0 . (M(X))e=o = F(x) + i E(ﬁ'i) ; F(ﬂ - 7o) - L

n=1

In practice as € — O, the radiation exchange would be very small;
consequently the tube would be influenced more by heat transfer from the
external envirormment, since it would not be possible to insulate the out-
side surface of the wall perfectly.

A quantity which can be computed from the temperature distribution
is the net heat transferred axially through the tube from the hot left
enviromnment to the right enviromment at zero temperature. At steady
state the heat leaving the right end is equal to that entering the left

-+

end, which can be obtained as follgws. The heat radiated in

H

rom the left
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4 2
environment is OTZ E%—-. The heat radiated out to the left environment

L
from the tube wall is ean\J/\ Tz(X)M(X)dX. The net heat transferred
/O

through the tube is then

Qs 2

~SPeculBr o1 - e 6 M(x)dx (27)
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The result for the diffuse wall is the same as for the black wall and can
be obtained from Eq. (27) when € = 1. This has been plotted in Fig. 7(a)
as a function of tube length. The maximum transmission occurs as the length
approaches zero. For an L/D of 10 the heat transferred through a tube
with a black or diffuse reflecting wall has been reduced to 10 percent
of the maximum, and decreases slowly as the length is further increased.
Figure 7(b) shows how the heat transmitted through the tube is
increased when the wall is specular. When the emissivity of the surface
2

is zero the heat transmitted becomes OT% E%— and is independent of the

channel length. Thus it may be possible to transfer heat over a considerable
distance by using a polished tube, and the wall temperature of the channel
can be kept reasonably low by using very small emissivities. This is
analogous to the phenomenon in fiber optics in which light is trapped
inside a glass filament and is transmitted along its length.
CONCLUDING REMARKS

The temperature distribution along the length of a heated tube has

been determined when the internal heat exchange is by radiation only and

the outside of the tube is insulated. The limiting case was examined where



the internal tube surface is a completely specular reflector and the results
were compared with those for a diffuse surface. For s given heat input to
the tube, a specular surface produces a temperature distribution which is
more uniform along the tube length and in some cases reduces the maximum
temperature as compared with the black or diffusely reflecting case. When
a heat flux is not imposed at the tube wall, but the enviromment at one
end of the tube is hot while the other is cold, then heat is transmitted
longitudinally through the tube. For a diffuse wall the transmitted heat
is not a function of wall emissivity, whereas for a specular wall the
transmission is substantially increased as the emissivity is reduced. In
all instances more heat is transferred through the tube in the specular
reflecting case than in the black or diffuse cases, and the maximum wall
temperatures are lower for the specular cases.
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TABLE T.

WALL TEMPERATURE (o/q)%/4 T,

- COMPARTSON OF SOLUTIONS FOR DIMENSIONLESS

IN A HEATED

BLACK TUBE (e = 1) WITH ZERO

ENVIRONMENT TEMPERATURE.

L|x%/L ‘ COARS
D
Numerical| Taylor | Variational | Separable Error
(matrix | series kernel correction
solution)
1) 0 1.557 1.560 1.562 1.565 1.557
.25 1.980 1.979 1.978 1.980 1.980
.5 2.069 2.070 2.072 2.074 2.070
10 | O 1.795 1.804 1.816 1.821 1.793
.25 2.591 2.590 2.589 2.639 2.587
.5 2.733 2.734 2.739 2.795 2.728
2010 2.086 2.108 2.134 2.141 2.087
.29 3.472 3.489 3.488 3.616 3.467
) 3.687 3.706 3.714 3.856 3.677




TABLIE II.
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-~ COMPARISON OF SPECULAR SOLUTIONS

FOR DIMENSIONLESS WALL TEMPERATURE
(U/Q>l/4 Ty

IN A HEATED TUBE WITH

ZERO ENVIRONMENT TEMPERATURE.

L (x/n (/¥4
o va
€ = 0.1 € = 0.5
‘| Numerical | Taylor| Numerical | Taylor
(matrix | series| (matrix | series
solution) solution)
S 0 : 2.038 2.048 1.629 1.646
.25 2.133 2.132 1.895 1.892
) 2.155 2.156 1.952 1.952
10| 0 2.172 2.198 1.826 1.865
.25 2.357 2.354 2.326 2.321
) 2.396 2.397 2.418 2.418
20| O 2.357 2.412 2.082 2.148
.25 2.701 2.698 2.966 2.962
.5 2.766 2.767 3.111 3.111




11

*gpue Yqoq 9' usdo sqny Jetndsal) - T oandtd

et 1 -
- =)
| Y= Ny X N
. VP ,,., vPp ,,_ ,_. |
B X-H ;) .
\\ b \\ \
(X)"1

d31Vv7INSNI m_o_m._bo/

28eT-H




E-1382

X

=X /3
X/ 2 —=

—

Figure 2. - Reflections of radiant beams passing from element at X

to opening at left end of tube.
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x=X
D

s i
(@) L/D=5. FOR 2.5< x <5, 8% (x) = 8% (5-x).

Figure 4. - Dimensionless wall temperature distributions for specular or
diffuse reflections in a heated tube. Ti= 0; Ty = O.
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L/D=10. FOR 5<x <10, 8%(x)= 8% (10-x).

Figure 4. - Continued. Dimensionless wall temperature dis-
tributions for specular or diffuse reflections in a
heated tube. Ty=0; T, = O.



E-1382

SPECULAR

DIFFUSE -

—— — —— /

|
6 8 10
xs X
"D

I I
2.0 g

1 X
(c) %=20. FOR 10< x < 20, 8%(x) = 8%(20-x).

Flgure 4. - Concluded. Dimensionless wall temp-
erature distributions for specular or diffuse
reflections in a heated tube. Ty = 0; Ty = O.
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Figure 5. - Wall temperature at midpoint (X = L/2) of a
heated tube for diffuse or specular walls. T = 0;
Tr = 0.
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Figure 6. - Dimensionless temperature distributions in an unheated tube with left environment at

temperature T3 and right enviromment at Tp = O. For 0.5 < X/L < 1.0, 8g (X/L) =1 - 6, (1 - X/L).
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(a) BLACK OR DIFFUSE REFLECTING
WALL.
Figure 7. - Net heat transmitted through an unheated tube. T3 = Tjy;

T, = 0.
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(b) SPECULAR WALL COMPARED WITH
DIFFUSE OR BLACK WALL.

Figure 7. - Concluded. Net heat transmitted through an unheated
tube. T7 = T7; T, = 0.
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